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ABSTRACT: The reaction of activated trihalome-
thylsubstituted alkenes with salicylaldehydes in the
presence of triethylamine gives 3-substituted 2-trifluo-
romethylchroman-4-ols and 2-trifluoro(trichloro)-
methyl-2H-chromenes in high yields. C© 2005 Wiley
Periodicals, Inc. Heteroatom Chem 16:492–496, 2005;
Published online in Wiley InterScience (www.interscience.
wiley.com). DOI 10.1002/hc.20146

INTRODUCTION

Substituted 2,2-dimethylchromans and chromenes
are common natural products which are widely dis-
tributed among many plants [1]. Furthermore, they
have considerable biological importance, especially
as potentially useful pesticides (antijuvenile hor-
mones precocene I and precocene II [2,3]) and drug
candidates in the field of potassium channel openers
(for example, cromakalim, a highly potent antihyper-
tensive drug [4–7]). Several analogues of 2-methyl-
2H-chromene also show interesting pharmaceuti-
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cal activity and are potential medicinal agents [1,8].
Because of their reactivity and relative stability, 2-
methyl- and 2,2-dimethyl-2H-chromenes have an
important role and are valuable intermediates for
synthetic purposes in chroman chemistry [9–14].

The introduction of fluorine in place of hydro-
gen to modify the bioactivity of organic molecules
is a well-established practice [15–18]. As a result,
considerable efforts have been made in the develop-
ment of trifluoromethylated analogues of precocenes
[19–21], cromakalim [22–24], and lactarochromal
[19,20,25], in which both or one of the methyl groups
in the gem-dimethyl moiety are replaced by the
CF3 group. In spite of advances in this area, pub-
lished data on the synthesis of 2-(trihalomethyl)-
2H-chromenes are lacking. To our knowledge, there
has been only one report on the preparation of
2-(trifluoromethyl)chroman-4-one [26], which may
be regarded as a precursor for the synthesis of
2-trifluoromethyl-2H-chromene.

RESULTS AND DISCUSSION

It is well known that the reactions of salicylaldehydes
with acrylonitrile [27–29], alkyl vinyl ketones [30–
33], and nitro alkenes [34–39] give �3-chromenes
containing electron-withdrawing substituents at the
3-position. Although these compounds are not found
in nature, their derivatives are reported to be useful
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from industrial and medical points of view [40,41].
These facts and our continuing interest in the chem-
istry of trifluoromethyl analogues of natural chro-
mans and chromenes [19,20,25] led us to investigate
the synthesis of the hitherto unknown 2-CX3-3-R-
2H-chromenes (X = F, Cl; R = COPh, NO2). In this
work, we report a simple and convenient synthesis
of these compounds involving the condensation of
salicylaldehydes 1 with trihaloethylidene derivatives
of acetophenone and nitromethane 2a–c, prepared
from trifluoro(trichloro)acetaldehyde hydrates [42–
45]. Although much attention has been paid to the
chemistry of alkenes 2 mainly due to the possibil-
ity of using them as an excellent building blocks for
the preparation of a variety of CX3-containing com-
pounds [46–53], their reactions with salicylaldehy-
des were not described in the literature.

We have found that salicylaldehyde and 5-
bromosalicylaldehyde react with (E)-4,4,4-trifluoro-
1-phenyl-2-buten-1-one (2a) in the presence of tri-
ethylamine in dichloromethane for 1–3 days at room
temperature to afford chromanols 3a,b in 71%
and 56% yields, respectively. In all cases, only one
regio- and stereo-isomer was obtained (Scheme 1).
A plausible mechanism for the reaction involves
triethylamine catalyzed tandem conjugate addition/
aldol-type reaction [38]. When triethylamine was re-
placed by DABCO, the reaction did not occur and
only resinification was observed.

The configuration and the conformational pref-
erences of chromanols 3a,b have been assigned on
the basis of 1H NMR data. In particular, two coupling
constants, the J2,3 = 10.5–10.6 Hz (axial–axial) and
J3,4 = 9.7 Hz (axial–pseudoaxial), indicate an equa-
torial position for the 2-CF3 and 3-COPh substituents
and a pseudoequatorial position for the 4-OH group
in the mobile dihydropyran fragment of 3a,b, which
are therefore trans-trans products [34]. The subse-
quent dehydration of the chromanols 3a,b to the
corresponding 2H-chromenes 4a,b was performed

SCHEME 1

in refluxing toluene for 3 h in the presence of p-
toluene sulfonic acid as a catalyst in excellent yields
(Scheme 1).

Next, we investigated the reaction of salicylalde-
hydes 1 with (E)-3,3,3-trifluoro- and 3,3,3-trichloro-
1-nitroprop-1-enes (2b,c), for this, it was antici-
pated, would give a range of new trihalomethylated
3-nitro-2H-chromenes as precursors to a variety of
medicinally important chroman derivatives [40,41].
It turned out that unlike alkene 2a, the reaction
of trihaloethylidene nitromethanes 2b,c with sal-
icylaldehydes 1 is much faster, reaching comple-
tion within 10 min to 2 h. Moreover, under the
conditions used, additional step to affect dehydra-
tion of the corresponding chromanols 3 was not
necessary since the reaction proceeded smoothly
to give 2-trifluoromethyl- and 2-trichloromethyl-3-
nitro-2H-chromenes 4c–f directly in 76–99% yields
(Scheme 2). It seems that the CX3 group favors the
initial Michael addition reaction due to its electron-
withdrawing character, which lowers the LUMO
level of the molecule [54]. However, the halogenated
substituents do not exercise significant control over
the reaction: the regiochemistry is determined by the
nitro or acyl group. In the light of the present interest
in fluoro-containing compounds as pharmaceutical
intermediates [15–18], this novel entry to fluorinated
analogues of 2-methyl-2H-chromene is noteworthy.

The structures of compounds 4 compare well
with the results of elemental analysis, 1H, 19F NMR,
and IR spectroscopy. A characteristic feature of the
1H NMR spectra of 4c–f is the appearance of singlet
at δ 8.03–8.13 ppm for the H-4 proton and quartet at
δ 6.09 ppm with JH,F = 6.2–6.3 Hz for the H-2 pro-
ton (singlet at δ 6.32–6.33 ppm in the case of 4e,f).
All reactions are clean, easy to perform, and proceed
at room temperature; however, trichloroethylidene
acetonitrile did not react under similar reaction con-
ditions. The results obtained by using two salicyl-
aldehydes 1 and three activated alkenes 2a–c are
summarized in Table 1.

In conclusion, the reaction of salycilaldehydes
with activated trihalomethyl substituted alkenes pro-
vides convenient preparative process from readily
available starting materials to 2-CF3- and 2-CCl3-
2H-chromenes, which may be considered as a new
precursors in the synthesis of other useful chroman
derivatives.

SCHEME 2
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TABLE 1 Synthesis of Chromanols 3a,b and Chromenes
4a–f by Reaction of Salicylaldehydes 1 with Trihalomethyl
Substituted Alkenes 2a–c

R X Compound Yield (%) Mp ( ◦C)

H F 3a 71 195–196
Br F 3b 56 205–206
H F 4a 98 98–100
Br F 4b 80 110–112
H F 4c 76 82–83
Br F 4d 93 97–98
H Cl 4e 94 105–106
Br Cl 4f 85 123–125

EXPERIMENTAL

Melting points obtained were uncorrected. IR spec-
tra were recorded on an Perkin-Elmer Spectrum
BX-II instrument as KBr disks. 1H and 19F NMR
spectra were recorded on a Bruker DRX-400 spec-
trometer (1H at 400 MHz and 19F at 376 MHz) with
TMS and C6F6 as internal standards. All solvents
used were dried and distilled per standard proce-
dures. The starting trihalomethyl substituted alkenes
2a–c were prepared by direct condensation of the
appropriate trihaloacetaldehyde hydrates with ace-
tophenone and nitromethane according to described
procedures [42–45].

Trans-trans-3-Benzoyl-2-(trifluoromethyl)chro-
man-4-ol (3a). To a solution of salicylaldehyde
(0.64 g, 5.2 mmol) and alkene 2a (1.05 g, 5.2 mmol)
in dichloromethane (10 mL) was added triethyl-
amine (0.10 g, 1.0 mmol). The mixture was allowed
to stand for 72 h at r.t. After partial evaporation of
the solvent, the residue was diluted with hexane
(6 mL) and the crystalline material was collected
by filtration to give 1.2 g (71%) of 3a as a color-
less powder. IR (KBr): ν 3485, 3420, 1668, 1583,
1485 cm−1. 1H NMR (400 MHz, CDCl3/TMS): δ 2.27
(d, 1H, OH, J = 7.4 Hz), 4.15 (dd, 1H, H-3, J = 10.5,
9.7 Hz), 4.90 (dq, 1H, H-2, J = 10.5, 5.8 Hz), 5.30
(dd, 1H, H-4, J = 9.7, 7.4 Hz), 6.99 (dd, 1H, H-8,
J = 8.2, 1.0 Hz), 7.08 (td, 1H, H-6, J = 7.5, 1.0 Hz),
7.29 (br t, 1H, H-7, J = 7.8 Hz), 7.45-7.55 (m, 3H,
H-5, H-3′, H-5′), 7.64 (tt, 1H, H-4′, J = 7.4, 1.0 Hz),
8.01–8.04 (m, 2H, H-2′, H-6′). 19F NMR (376 MHz,
CDCl3/C6F6): δ 85.63 (d, CF3, J = 5.8 Hz). Anal.
Calcd for C17H13F3O3: C, 63.36; H, 4.07. Found: C,
63.00; H, 3.95.

Trans-trans-3-Benzoyl-6-bromo-2-(trifluorome-
methyl)chroman-4-ol (3b). This compound was
prepared analogously to 3a for 24 h as a color-
less powder. IR (KBr): ν 3483, 3431, 1673, 1633,
1475 cm−1. 1H NMR (400 MHz, CDCl3/TMS): δ 2.32
(d, 1H, OH, J = 7.2 Hz), 4.12 (dd, 1H, H-3, J = 10.6,

9.7 Hz), 4.90 (dq, 1H, H-2, J = 10.6, 5.7 Hz), 5.27
(dd, 1H, H-4, J = 9.7, 7.2 Hz), 6.88 (d, 1H, H-8,
J = 8.7 Hz), 7.38 (ddd, 1H, H-7, J = 8.7, 2.4, 1.0 Hz),
7.50–7.55 (m, 2H, H-3′, H-5′), 7.63 (dd, 1H, H-5,
J = 2.4, 0.8 Hz), 7.65 (tt, 1H, H-4′, J = 7.4, 1.1 Hz),
8.00–8.03 (m, 2H, H-2′, H-6′). 19F NMR (376 MHz,
CDCl3/C6F6): δ 85.58 (d, CF3, J = 5.7 Hz). Anal.
Calcd for C17H12BrF3O3: C, 50.90; H, 3.01. Found: C,
51.03; H, 3.01.

3-Benzoyl-2-(trifluoromethyl)-2H-chromene (4a).
A mixture of 3a (0.11 g, 0.3 mmol) and a catalytic
amounts of TsOH in toluene (5 mL) was refluxed for
3 h. The resulting solution was concentrated under
reduced pressure, and the precipitate that formed
was recrystallized from hexane as a colorless powder.
IR (KBr): ν 1637, 1603, 1571, 1482 cm−1. 1H NMR
(400 MHz, CDCl3/TMS): δ 6.09 (q, 1H, H-2, J = 7.1
Hz), 6.99 (td, 1H, H-6, J = 7.5, 1.0 Hz), 7.02 (d, 1H,
H-8, J = 8.2 Hz), 7.17 (dd, 1H, H-5, J = 7.5, 1.6 Hz),
7.29 (s, 1H, H-4), 7.35 (ddd, 1H, H-7, J = 8.2, 7.5,
1.6 Hz), 7.50–7.55 (m, 2H, H-3′, H-5′), 7.62 (tt, 1H,
H-4′, J = 7.4, 1.3 Hz), 7.75–7.78 (m, 2H, H-2′, H-6′).
19F NMR (376 MHz, CDCl3/C6F6): δ 82.76 (d, CF3,
J = 7.1 Hz). Anal. Calcd for C17H11F3O2: C, 67.11; H,
3.64. Found: C, 67.10; H, 3.63.

3-Benzoyl-6-bromo-2-(trifluoromethyl)-2H-chro-
mene (4b). This compound was prepared analo-
gously to 4a as a colorless powder. IR (KBr): ν
1645, 1598, 1564, 1473 cm−1. 1H NMR (400 MHz,
CDCl3/TMS): δ 6.09 (q, 1H, H-2, J = 7.0 Hz), 6.92
(d, 1H, H-8, J = 8.7 Hz), 7.20 (s, 1H, H-4), 7.32 (d,
1H, H-5, J = 2.4 Hz), 7.43 (dd, 1H, H-7, J = 8.7,
2.4 Hz), 7.50–7.55 (m, 2H, H-3′, H-5′), 7.64 (tt, 1H,
H-4′, J = 7.5, 1.3 Hz), 7.74–7.77 (m, 2H, H-2′, H-6′).
19F NMR (376 MHz, CDCl3/C6F6): δ 83.03 (d, CF3,
J = 7.0 Hz). Anal. Calcd for C17H10BrF3O2: C, 53.29;
H, 2.63. Found: C, 53.43; H, 2.60.

General Procedure for the Synthesis of
3-Nitrochromenes 4c–f

To a solution of salicylaldehyde 1 (10 mmol) and
nitroalkene 2 (10 mmol) in a minimal volume of
dichloromethane (1.5–5 mL) was added triethy-
lamine (0.15 g, 1.5 mmol). The mixture was stirred
for 2 h (10 min in the case of 4d) at r.t. After evap-
oration of the solvent, the residue was recrystallized
from hexane to give compound 4 as yellow needles.

3-Nitro-2-(trifluoromethyl)-2H-chromene (4c). IR
(KBr): ν 1651, 1608, 1571, 1525, 1457, 1327 cm−1.
1H NMR (400 MHz, CDCl3/TMS): δ 6.09 (q, 1H, H-2,
J = 6.3 Hz), 7.07 (d, 1H, H-8, J = 8.2 Hz), 7.11 (td,
1H, H-6, J = 7.5, 1.0 Hz), 7.37 (dd, 1H, H-5, J = 7.6,
1.6 Hz), 7.46 (ddd, 1H, H-7, J = 8.2, 7.5, 1.6 Hz), 8.12
(s, 1H, H-4). 19F NMR (376 MHz, CDCl3/C6F6): δ 83.92
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(d, CF3, J = 6.3 Hz). Anal. Calcd for C10H6F3NO3: C,
48.99; H, 2.47; N, 5.71. Found: C, 49.03; H, 2.49; N,
5.61.

6-Bromo-3-nitro-2-(trifluoromethyl)-2H-chro-
mene (4d). IR (KBr): ν 1650, 1599, 1564, 1520, 1473,
1331 cm−1. 1H NMR (400 MHz, CDCl3/TMS): δ 6.09
(q, 1H, H-2, J = 6.2 Hz), 6.98 (d, 1H, H-8, J =
8.7 Hz), 7.50 (d, 1H, H-5, J = 2.4 Hz), 7.54 (dd, 1H,
H-7, J = 8.7, 2.4 Hz), 8.04 (s, 1H, H-4). 19F NMR
(376 MHz, CDCl3/C6F6): δ 84.02 (d, CF3, J = 6.2 Hz).
Anal. Calcd for C10H5BrF3NO3: C, 37.07; H, 1.56; N,
4.32. Found: C, 37.16; H, 1.45; N, 4.24.

3-Nitro-2-(trichloromethyl)-2H-chromene (4e).
IR (KBr): ν 1642, 1605, 1526, 1453, 1328 cm−1. 1H
NMR (400 MHz, CDCl3/TMS): δ 6.33 (s, 1H, H-2),
7.09 (td, 1H, H-6, J = 7.5, 1.0 Hz), 7.11 (d, 1H, H-8,
J = 8.2 Hz), 7.36 (dd, 1H, H-5, J = 7.5, 1.6 Hz),
7.46 (ddd, 1H, H-7, J = 8.2, 7.5, 1.6 Hz), 8.13 (s, 1H,
H-4). Anal. Calcd for C10H6Cl3NO3: C, 40.78; H, 2.05;
N, 4.76. Found: C, 40.76; H, 1.87; N, 4.75.

6-Bromo-3-nitro-2-(trichloromethyl)-2H-chro-
mene (4f). IR (KBr): ν 1642, 1601, 1562, 1523, 1472,
1335 cm−1. 1H NMR (400 MHz, CDCl3/TMS): δ 6.32
(s, 1H, H-2), 7.01 (dd, 1H, H-8, J = 8.7, 0.4 Hz),
7.49 (d, 1H, H-5, J = 2.4 Hz), 7.54 (dd, 1H, H-7,
J = 8.7, 2.4 Hz), 8.03 (s, 1H, H-4). Anal. Calcd for
C10H5BrCl3NO3: C, 32.17; H, 1.35; N, 3.75. Found:
C, 32.34; H, 1.25; N, 3.72.
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